Математика 3 Барлық мамандықтардың барлық оқу түрінің студенттеріне арналған дәрістер жинағы Алматы 2008

Loading...


бет43/64
Дата28.03.2020
өлшемі0.91 Mb.
1   ...   39   40   41   42   43   44   45   46   ...   64

11.6 анықтама  функциясы  облысында гармониялық болады, егер оның үшінші ретке дейінгі үзіліссіз дербес туындылары бар және -да  Лаплас теңдеуіне қанағаттандыратын болса

.                                           (11.3)

(11.3) – Лаплас теңдеуі.



12 дәріс Лаплас түрлендіруінің анықтамасы

Мазмұны: Лаплас түрлендіруінің анықтамасы, қасиеттері. Екі функцияның үйірткісі (свертка) және оның бейнесі. Бейнелер кестесі.

Дәрістің мақсаты: Лаплас түрлендіруінің анықтамасын білу. Функцияның бейнесін табуда түрлендірудің қасиеттерін пайдалануды үйрету. Бейнелердің негізгі кестесін білу.

12.1 анықтама Нақты айнымалыдан тәуелді  функциясының Лаплас түрлендіруі деп комплекс айнымалыдан тәуелді,

                                               (12.1)

формуласымен анықталатын  функциясы аталады.

(12.1)-дің оң жағындағы  комплекс параметрінен тәуелді меншіксіз интеграл Лаплас интегралы деп аталады.

Алдымен қандай  функцияларын қарастыратынымызды және (12.1) меншіксіз интегралы жинақты болу үшін -ға қандай шарттар қоятыны-мызды анықтап аламыз.

Төмендегі шарттар орындалсын деп ұйғарамыз:

1. егер  болса, онда;



2.  болғанда  үзінді-үзіліссіз болады, яғни  немесе үзіліссіз, немесе әрбір ақырлы кесіндіде санаулы бірінші текті үзіліс нүктелері бар функция;

3.  болғанда  функциясының модулі өсуі мүмкін, бірақ өсу жылдамдығы кейбір көрсеткіштік функциядан аспайды, яғни  және  тұрақты сандары табылып, кез келген  үшін

                                               (12.2)

теңсіздігі орындалады.

(12.2) теңсіздігі орындалатындай барлық  сандарының төменгі шекара-сы  функциясының өсу көрсеткіші деп аталады.

1, 2, 3 шарттарына қанағаттандыратын  функциясы түпнұсқа (ориги-нал) деп аталады.



(12.1) формуласы бойынша анықталатын  функциясы -ның бейнесі деп аталады да,  немесе  деп белгіленеді.

Хевисайдтың бірлік функциясын қарастырамыз. Ол мына түрде алынады



    

  



        

 

 



     1

               



 

                 0                              t             1сурет



 функциясы түпнұсқа болатынын көрсетеміз.

Біріншіден,  болғанда ; екіншіден,  болғанда  үзіліс-сіз, өйткені ол тұрақты функция; үшіншіден, егер  болса , яғни  шенелген. Сонымен,  түпнұсқа болады.

 үшін бейнесін табамыз:

 егер  болса.

Сонымен, егер  болса  үшін  бейнесі табылады да, ол  болады. Жазуды қысқарту үшін  деп жазамыз, онда

.                                                       (12.3)

Жалпы, егер кейбір  функциясы туралы айтатын болсақ, мысалы  және т.с.с., онда   және т.с.с. функциялары туралы айтқанымыз деп келісеміз.

 функциясы көмегімен , т.с.с. түрінде жазуға болады, бірақ қысқаша , т.с.с. деп жазсақ жеткілікті.



Достарыңызбен бөлісу:
1   ...   39   40   41   42   43   44   45   46   ...   64
Loading...


©melimde.com 2020
әкімшілігінің қараңыз

    Басты бет
рсетілетін ызмет
Жалпы ережелер
ызмет стандарты
дістемелік кешені
бекіту туралы
туралы хабарландыру
біліктілік талаптары
кіміні аппараты
Конкурс туралы
жалпы біліктілік
ойылатын жалпы
мемлекеттік кімшілік
жалпы конкурс
Барлы конкурс
білім беретін
республикасы білім
ызмет регламенті
бойынша жиынты
ткізу туралы
конкурс атысушыларына
біліктілік талаптар
атысушыларына арнал
Республикасы кіметіні
идаларын бекіту
облысы кімдігіні
мемлекеттік ызмет
рсетілетін ызметтер
стандарттарын бекіту
Конкурс ткізу
мемлекеттік мекемесі
дебиеті маманды
Мектепке дейінгі
дістемелік сыныстар
дістемелік материалдар
ауданы кіміні
конкурс туралы
жалпы білім
рметті студент
облысы бойынша
білім беруді
мектепке дейінгі
мыссыз азаматтар
Мемлекеттік кірістер
Конкурс жариялайды
дарламасыны титулды
дістемелік кешен
ызметтер стандарттарын
мелетке толма
разрядты спортшы
аласы кіміні
директоры бдиев

Loading...