Математика 3 Барлық мамандықтардың барлық оқу түрінің студенттеріне арналған дәрістер жинағы Алматы 2008


II-ші ретті сызықтық біртекті емес дифференциалдық теңдеулер

Loading...


бет22/64
Дата28.03.2020
өлшемі0.91 Mb.
1   ...   18   19   20   21   22   23   24   25   ...   64

II-ші ретті сызықтық біртекті емес дифференциалдық теңдеулер  

II-ші ретті сызықтық біртекті емес дифференциалдық теңдеулерді қарастырамыз



  ,                                     (5.4)

.                                           (5.1)

5.2 теорема (5.4) сызықтық біртекті емес дифференциалдық теңдеудің жалпы шешімі осы теңдеудің кез келген дербес шешімі мен (5.4)-ке сәйкес (5.1) біртекті теңдеудің жалпы шешімінің қосындысы болады

                                                 (5.5)

 – (5.4)-тің шешімі, – (5.1)-дің шешімі, – (5.4)-тің шешімі кейбір дербес шешімі.

Дәлелдеуі функциясын алайық. Осы функция (5.4)-тің шешімі болатынын көрсетейік. Ол үшін туындыларын есептейміз . Туындыларды (5.4)-ке орнына қойып

,

яғни тепе-теңдікке келдік: .



 функциясы (5.4)-тің жалпы шешімі болатынын көрсетейік. (5.4)-тің кез келген  шешімін алайық, онда  біртекті теңдеудің жалпы шешімі болады, себебі төмендегі теңдік орындалады

.

 функциясы сызықтық біртекті теңдеудің шешімі болғандықтан, оны  түрінде жазуға болады, яғни  , демек, (5.5)-тен кейбір дербес шешімді ажыратып алдық. Олай болса, (5.5) – сызықтық біртекті емес дифференциалдық теңдеудің жалпы шешімі. Теорема дәлелденді.

Еркін тұрақтыларды вариациялау көмегімен  табу жолын көрсетейік.  – (5.1) сызықтық біртекті теңдеудің жалпы шешімі болсын. Дербес шешімін табамыз. Жалпы шешімі



                                          (5.6)

түрінде жазылсын.



 туындысын есептейміз:  және  функцияларын

                                                (5.7)

теңдігі орындалатындай етіп таңдаймыз. Онда -ті есептейміз:, оны (7.1)-ге қойсақ, мынаны аламыз: 

, яғни

.                                             (5.8)

Сонымен, егер де  мен  функциялары (5.7) мен (5.8)-ге, дәлірек айтқанда



                                           (5.9)

жүйесіне қанағаттандырса, онда (5.6) берілген теңдеудің шешімі болады



 мен  сызықтық тәуелсіз функциялар болған соң, жүйенің анықтауы-шы  болады, сондықтан (5.9)-дың жалғыз  шешімі табылады. Осыдан екенін таба-мыз. Табылған  мен  функцияларын (5.6)-ға қойсақ, (5.4) сызықтық біртекті емес теңдеудің жалпы шешімін анықтаймыз. 


Достарыңызбен бөлісу:
1   ...   18   19   20   21   22   23   24   25   ...   64
Loading...


©melimde.com 2020
әкімшілігінің қараңыз

    Басты бет
рсетілетін ызмет
Жалпы ережелер
ызмет стандарты
дістемелік кешені
бекіту туралы
туралы хабарландыру
біліктілік талаптары
кіміні аппараты
Конкурс туралы
жалпы біліктілік
ойылатын жалпы
мемлекеттік кімшілік
жалпы конкурс
Барлы конкурс
білім беретін
республикасы білім
ызмет регламенті
бойынша жиынты
ткізу туралы
конкурс атысушыларына
біліктілік талаптар
атысушыларына арнал
Республикасы кіметіні
идаларын бекіту
облысы кімдігіні
мемлекеттік ызмет
рсетілетін ызметтер
стандарттарын бекіту
Конкурс ткізу
мемлекеттік мекемесі
дебиеті маманды
Мектепке дейінгі
дістемелік сыныстар
дістемелік материалдар
ауданы кіміні
конкурс туралы
жалпы білім
рметті студент
облысы бойынша
білім беруді
мектепке дейінгі
мыссыз азаматтар
Мемлекеттік кірістер
Конкурс жариялайды
дарламасыны титулды
дістемелік кешен
ызметтер стандарттарын
мелетке толма
разрядты спортшы
аласы кіміні
директоры бдиев

Loading...