И настал момент чётко сформулировать, что же это такое


Математическое ожидание дискретной случайной величины

Loading...


бет3/4
Дата16.04.2020
өлшемі77.85 Kb.
1   2   3   4

Математическое ожидание дискретной случайной величины

Говоря простым языком, это среднеожидаемое значение при многократном повторении испытаний. Пусть случайная величина  принимает значения  с вероятностями  соответственно. Тогда математическое ожидание  данной случайной величины равно сумме произведений всех её значений на соответствующие вероятности:

или в свёрнутом виде:


Вычислим, например, математическое ожидание случайной величины  – количества выпавших на игральном кубике очков:



 очка

В чём состоит вероятностный смысл полученного результата? Если подбросить кубик достаточно много раз, то среднее значение выпавших очков будет близкО к 3,5 – и чем больше провести испытаний, тем ближе. Собственно, об этом эффекте я уже подробно рассказывал на уроке о статистической вероятности.



Теперь вспомним нашу гипотетическую игру:

Возникает вопрос: а выгодно ли вообще играть в эту игру? …у кого какие впечатления? Так ведь «навскидку» и не скажешь! Но на этот вопрос можно легко ответить, вычислив математическое ожидание, по сути – средневзвешенный по вероятностям выигрыш:



, таким образом, математическое ожидание данной игры проигрышно.

Не верь впечатлениям – верь цифрам!

Да, здесь можно выиграть 10 и даже 20-30 раз подряд, но на длинной дистанции нас ждёт неминуемое разорение. И я бы не советовал вам играть в такие игры :) Ну, может, только ради развлечения.

Из всего вышесказанного следует, что математическое ожидание – это уже НЕ СЛУЧАЙНАЯ величина.

Творческое задание для самостоятельного исследования:

Пример 4

Мистер Х играет в европейскую рулетку по следующей системе: постоянно ставит 100 рублей на «красное». Составить закон распределения случайной величины  – его выигрыша. Вычислить математическое ожидание выигрыша и округлить его до копеек. Сколько в среднем проигрывает игрок с каждой поставленной сотни?



Справка: европейская рулетка содержит 18 красных, 18 чёрных и 1 зелёный сектор («зеро»). В случае выпадения «красного» игроку выплачивается удвоенная ставка, в противном случае она уходит в доход казино

Существует много других систем игры в рулетку, для которых можно составить свои таблицы вероятностей. Но это тот случай, когда нам не нужны никакие законы распределения и таблицы, ибо доподлинно установлено, что математическое ожидание игрока будет точно таким же. От системы к системе меняется лишь дисперсия, о которой мы узнаем во 2-й части урока.

Но прежде будет полезно размять пальцы на клавишах калькулятора:

Пример 5

Случайная величина  задана своим законом распределения вероятностей:


Найти , если известно, что . Выполнить проверку.



Есть?

Тогда переходим к изучению



Достарыңызбен бөлісу:
1   2   3   4
Loading...


©melimde.com 2020
әкімшілігінің қараңыз

    Басты бет
рсетілетін ызмет
Жалпы ережелер
ызмет стандарты
дістемелік кешені
бекіту туралы
туралы хабарландыру
бойынша жиынты
біліктілік талаптары
кіміні аппараты
Конкурс туралы
жалпы біліктілік
ойылатын жалпы
мемлекеттік кімшілік
білім беретін
жалпы конкурс
Барлы конкурс
республикасы білім
ызмет регламенті
ткізу туралы
конкурс атысушыларына
біліктілік талаптар
атысушыларына арнал
дістемелік сыныстар
Республикасы кіметіні
идаларын бекіту
облысы кімдігіні
мемлекеттік ызмет
рсетілетін ызметтер
мемлекеттік мекемесі
стандарттарын бекіту
Конкурс ткізу
Мектепке дейінгі
дебиеті маманды
білім беруді
жалпы білім
дістемелік материалдар
мектепке дейінгі
ауданы кіміні
мерзімді жоспар
конкурс туралы
облысы бойынша
рметті студент
мыссыз азаматтар
Мемлекеттік кірістер
дарламасыны титулды
Конкурс жариялайды
дістемелік кешен
разрядты спортшы
мелетке толма
ызметтер стандарттарын
аласы кіміні

Loading...