Физико-математический факультет

Loading...


Дата20.03.2020
өлшемі87.5 Kb.


КАЗАХСКИЙ НАЦИОНАЛЬНЫЙ ЖЕНСКИЙ ПЕДАГОГИЧЕСКИЙ УНИВЕРСИТЕТ

ФИЗИКО-МАТЕМАТИЧЕСКИЙ ФАКУЛЬТЕТ



СРМ

Работу выполнила Султанмуратова Ф.Э.


г.Алматы

2020 г.


План

1. Комплексные числа и их свойства………………………………………..3

1.1 О комплексных числах………………………………………………….. 3

1.2 Тригонометрическая и показательная формы комплексного числа…...3

2. Применение комплексных чисел к решению алгебраических уравнений

3-ей и 4-ой степеней………………………………………………………… 4

2.1 Формула Кардано………………………………………………………….4

2.2 Метод Феррари для уравнения 4-ой степени…………………………….5

Литература……………………………………………………………………..5

1. Комплексные числа и их свойства



1.1 О комплексных числах
В связи с развитием алгебры потребовалось ввести сверх прежде известных положительных и отрицательных чисел числа нового рода. Они называются комплексными. Комплексное число имеет вид a + bi; здесь a и b – действительные числа , а i – число нового рода, называемое мнимой единицей. “Мнимые” числа составляют частный вид комплексных чисел (когда а = 0). С другой стороны, и действительные числа являются частным видом комплексных чисел (когда b = 0).

Действительное число a назовем абсциссой комплексного числа a + bi; действительное число b – ординатой комплексного числа

a + bi. Основное свойство числа i состоит в том, что произведение i*i равно –1, т.е.

i2= -1. (1)

Долгое время не удавалось найти такие физические величины, над которыми можно выполнять действия, подчинённые тем же правилам, что и действия над комплексными числами – в частности правилу (1). Отсюда названия: “мнимая единица”, “мнимое число” и т.п. В настоящее время известен целый ряд таких физических величин, и комплексные числа широко применяются не только в математике, но также и в физике и технике.

Правило каждого действия над комплексными числами выводится из определения этого действия. Но определения действий над комплексными числами не вымышлены произвольно, а установлены с таким расчетом, чтобы согласовались с правилами действий над вещественными числами. Ведь комплексные числа должны рассматриваться не в отрыве от действительных, а совместно с ними.

Действительное число а записывается также в виде a + 0i (или a – 0i).

Примеры. Запись 3 + 0i обозначает то же, что запись 3. Запись –2 + 0i означает –2.

Комплексное число вида 0 + bi называется “чисто мнимым”. Запись bi обозначает то же, что 0 + bi. Два комплексных a + bi, a’ + b’i считаются равными, если у них соответственно равны абсциссы и ординаты, т. е. Если a = a’, b = b’. В противном случае комплексные числа не равны. Это определение подсказывается следующим соображением. Если бы могло существовать, скажем, такое равенство:

2 + 5i = 8 + 2i, то по правилам алгебры мы имели бы i = 2, тогда как i не должно бать действительным числом.



1.2 Тригонометрическая и показательная формы комплексного числа
Понятия «больше» или «меньше» для комплексных чисел лишено смысла (не принято никакого соглашения).

Если на плоскости введена декартова система координат 0xy, то всякому комплексному числу z=x+iy может быть поставлена в соответствие некоторая точка М(х,у) с абсциссой «х» и ординатой «у», а также радиус – вектор 0М. При этом говорят, что точка М(х,у) (или радиус – вектор 0М) изображает комплексное число z=x+iy.

Плоскость, на которой изображаются комплексные числа называется комплексной плоскостью, ось 0у – мнимой осью.

Число r=√x2+y2­, равное длине вектора, изображающего комплексное число, т.е. расстоянию от начала координат до изображающей это число точки, называется модулем комплексного числа z=x+iy и обозначается символом |z|.



Угол φ=(0М,ˆ0х) между положительным направлением оси 0х и вектором 0М, изображающим комплексное число z=x+iy ≠0, называется его аргументом.

Рис.3 –Тригонометрическая форма комплексного числа


Из определения видно, что каждое комплексное число (≠0), имеет бесконечное множество аргументов. Все они отличаются друг от друга на целые кратные 2π и обозначаются единым символом Argz (для числа z=0 аргумент не определяется, не имеет смысла).

Каждое значение аргумента совпадает с величиной φ некоторого угла, на который следует повернуть действительную ось (ось 0ч) до совпадения ее направления с направлением радиус-вектора точки М, изображающей число z (при этом φ > 0, если поворот совершается против часовой стрелки и φ <0 в противном случае). Таким образом, аргумент комплексного числа z=x+iy ≠0 есть всякое решение φ системы уравнений cosφ=x/√x2+y2; sinφ=y/√x2+y2.

Значение Argz при условии 0≤Argz<2π называется главным значением аргумента и обозначается символом argz. В некоторых случаях главным значением аргумента считают наименьшее по абсолютной величине его значения, т.е. значение, выделяемое неравенством -π<φ≤π.

Между алгебраическими х, у и геометрическими r, φ характеристиками комплексного числа существует связь, выражаемая формулами x=rcosφ, y=rsinφ, следовательно, z=x+iy=r(cosφ+isinφ). Последнее выражение, т.е.

z=r(cosφ+isinφ) (3)

называется тригонометрической формой комплексного числа. Любое число z≠0 может быть представлено в тригонометрической форме.

Для практики число вида (cosφ+isinφ) удобнее записывать короче, с помощью символа

eiφ=cosφ+isinφ (4)

Доказанное для любых чисел φ (действительных или комплексных) это равенство называется формулой Эйлера. С ее помощью всякое комплексное число может быть записано в показательной форме

z=reiφ (5)


2. Применение комплексных чисел к решению алгебраических уравнений 3-ей и 4-ой степеней

2.1 Формула Кардано

Рассмотрим приведенное алгебраическое уравнение 3-ей степени: x3+ax2+bx+c=0 (9).

(общее уравнение 3-ей степени сводится к приведенному делением на коэффициент при старшей степени). С помощью замены x=y-a/3 это уравнение примет вид :

y3+py+q=0, (10)

где p и q – новые коэффициенты, зависящие от a,b,c.

Пусть у0 – какой либо корень уравнения (10). Представим его в виде у0=α+β, где α и β – неизвестные пока числа, и подставим в уравнение. Получим α33+( α+β)(3αβ+p)+q=0 (11)

Выберем теперь α и β так, чтобы 3αβ+р=0. Такой выбор чисел α и β возможен, т.к. они (вообще говоря комплексные) удовлетворяют системе уравнений

α+β=у0;

αβ=-р/3, а значит, существуют.

При этих условиях уравнение (10) примет вид α33+q=0, а т.к. еще α3β3=-р3/27, то получаем систему

α33=-q;

α3β3=-р3/27,

из которой по теореме Виета следует, что α3 и β3 являются корнями уравнения t2+qt-p3/27=0. Отсюда находим: α3=-q/2+√q2/4+p3/27; β3=-q/2-√q2/4+p3/27, где √q2/4+p3/27 означает одно из возможных значений квадратного корня. Отсюда следует, что корни уравнения (9) выражаются формулой D=(q/2)2+(p/3)3.

y1.2.3=n√-q/2+√q2/4+p3/27+3√-q/2-√q2/4+p3/27, причем для каждого из трех значение первого корня 3√α соответствующие значения второго корня 3√β нужно брать так, чтобы было выполнено условие αβ=-р/3. Полученная формула называется формулой Кардано (ее можно записать в более компактном виде у=3√α+3√β, где α=-q/2+√q2/4+p3/27; β=-q/2-√q2/4+p3/27. Подставив в нее вместо р и q их выражения через a,b,c и вычитая а/3, получим формулу для уравнения (10).


2.2 Метод Феррари для уравнения 4-ой степени

Рассмотрим приведенное уравнение 4-ой степени

x4+ax3+bx2+cx+d=0 (12)

Сделав замену переменной х=у-а/4, получим уравнение

у4+ру2+qy+r=0 (13)

c коэффициентами p,q,r, зависящими от a,b,c,d. Преобразуем это уравнение к виду (y2+p/2)2+qy+(r-p2/4)=0, а затем, введя произвольное пока число α, представим его левую часть в равносильной форме (y2+p/2+α)2-[2α(y2+p/2)+α2-qy+p2/4-r]=0 (14)



Выберем теперь число α так, чтобы выражение в квадратных скобках 2αy2-qy+(αp+α2+p2/4-r) стало полным (точным) квадратом относительно у. Для этого нужно, чтобы его дискриминант был равен нулю, т.е. чтобы q2-8α(αp+α2+p2/4-r)=0, или 8α3+8pα2+8α(p2/4-r)-q2=0. Таким образом, для нахождения α получается уравнение 3-ей степени, и задача сводится к предыдущей. Если в качестве «α» взять один из корней этого уравнения, то левая часть уравнения (13) будет разностью квадратов и поэтому может быть разложена в произведение двух многочленов 2-ой степени относительно «у».

Литература



  1. Андронов И.К. Математика действительных и комплексных чисел. – М.: Просвещение, 2008.

2. Кураш А.Г. «Алгебраические уравнения произвольных степеней». М., «Наука», 2007.

3. Маркушевич А.И. «Комплексные числа и конформные отображения». М., «Физматгиз», 2009.

Достарыңызбен бөлісу:
Loading...


©melimde.com 2020
әкімшілігінің қараңыз

    Басты бет
рсетілетін ызмет
Жалпы ережелер
ызмет стандарты
дістемелік кешені
бекіту туралы
туралы хабарландыру
бойынша жиынты
біліктілік талаптары
кіміні аппараты
жалпы біліктілік
Конкурс туралы
ойылатын жалпы
мемлекеттік кімшілік
білім беретін
республикасы білім
жалпы конкурс
Барлы конкурс
ызмет регламенті
дістемелік сыныстар
ткізу туралы
конкурс атысушыларына
біліктілік талаптар
атысушыларына арнал
идаларын бекіту
мерзімді жоспар
Республикасы кіметіні
Мектепке дейінгі
облысы кімдігіні
рсетілетін ызметтер
мемлекеттік мекемесі
мемлекеттік ызмет
Конкурс ткізу
стандарттарын бекіту
санды жиынты
дебиеті маманды
білім беруді
мектепке дейінгі
дістемелік материалдар
жалпы білім
ауданы кіміні
конкурс туралы
рметті студент
облысы бойынша
алауды тапсырмалары
мыссыз азаматтар
Мемлекеттік кірістер
дарламасыны титулды
дістемелік кешен
Конкурс жариялайды
теориялы негіздері
ырыпты жоспар

Loading...