Евклидтік кеңістіктің сфералары қарастырылатын тригонометрия сфералық тригонометрия деп аталады. Жазық тригонометрия сфералық тригонометриядан кейінірек дами бастады

Loading...


Дата13.04.2020
өлшемі53.38 Kb.

Евклидтік кеңістіктің сфералары қарастырылатын тригонометрия сфералық тригонометрия деп аталады. Жазық тригонометрия сфералық тригонометриядан кейінірек дами бастады. Мысалы, Евклидтің «Негіздерінің» 2-кітабында косинустар теоремасы жайында айтылған. Тригонометрияны әл-Баттани (9–10 ғасырлар), Әбу-л-Вефа (10 ғасыр), Бхаскара (10 ғасыр) және ат-Туси (13 ғасыр), т.б. одан әрі дамытты. Оларға синустар теоремасы белгілі болған. Тангенстер теоремасын Региомонтан (15 ғасыр) тапқан. Одан кейін тригонометрияны дамытуға Н.Коперник (16 ғасырдың 1-жартысы), Т.Браге (16 ғасырдың 2-жартысы), Ф.Виет (16 ғасыр), И.Кеплер (16–17 ғасырлар), т.б. үлес қосты. Қазіргі түріндегі Т. Л.Эйлердің еңбектерінде баяндалды.


Тригонометрия ғылыми термин ретінде адамның практикалық әрекеттерінің нәтижесінде пайда болды. Ерте кезде астрономия ғылымы, суда жүзу, жер өлшеу, архитектура талаптары қандай да бір элементтер арқылы есептеу әдістерін ойлап табуға әкелді. Мысалы, олардың көмегімен қол жетпейтін заттарға дейінгі қашықтықты анықтау және географиялық карталарды құрастыруға арналған жергілікті жердің геодезиялық көшірмесін жасау жұмыстары бірқатар оңайлатылды. Мектепте тригонометриялық материалмен алғаш рет планиметрия курсын оқығанда танысады. Тригонометрияның көмегімен жазық үшбұрыштарды шығарды. Тригонометриялық қатынастар «синус», «тангенс» деген атқа ие болды, олардың мәндері есептеліп шығарылды. Тригонометриялық танымдардың негізі ежелгі заманда пайда болды. Аталмасы біршама кейінірек шыққанымен, тригонометрияға қатысты қазіргі көптеген ұғымдар мен фактілер бұдан екі мың жыл бұрын белгілі болған. Кейбір тригонометриялық мәліметтер ежелгі вавилондықтар мен египеттіктерге белгілі болған, бірақ ғылым ретінде Ежелгі Грецияда негізделген. Тригонометрия сөзі алғаш рет 1505 жылы неміс геологы және математигі Питискустың кітабының мазмұнында кездеседі. «Тригонометрия» атауының өзі грек сөзінен аударғанда «үшбұрыштарды өлшеу» деген ұғымды білдіреді. Ежелгі грек ғалымы белгілі астроном Клавдий Птолемей (ІІ ғ) «хорда тригонометриясын» ойлап тапты. Дайын кестелермен жұмыс істегенде немесе калькуляторды пайдаланғанда, біз көбінесе кестелер әлі ойлап табылмаған кездердің де болғанын естен шығарып аламыз. Оларды құру үшін аса көлемді есептеулерді орындап қана қоймай, кестелерді құрудың тәсілдерін де ойлап табу қажет болды. Птолемей кестесі бес ондық үлес таңбаларын қоса алғандағы дәлдікпен жасалған. Хордаларды синустармен ауыстырып, тригонометрияның әрі қарай дамуына үндістандық ғалымдар үлкен үлес қосты. Бұл жаңа енгізіу VIII ғасырда тригонометрияны бірте-бірте астрономия тарауынан бөліп алып, жеке ғылымға айналдырды. Ол араб тіліндегі жақын және алыс Батыс мемлекеттерінің математикасына ауысты. Оған үлес қосқандар Аль-хорезми, Аль-Коши, Насриддин Тусси, Жан фурье, Иоганн Бернули, Леонард Эйлер. Л.Эйлер тригонометрияның қазіргі кездегі түріне келтірілген XVIII ғасырдың ірі математигі еді, ол негізі швейцарлық, ұзақ жылдар бойы Россияда жұмыс істеген және Санкт-Петербург ғылым академиясының мүшесі болған. Тригонометриялық функциялардың белгілі анықтамасын да енгізген Л.Эйлер, кез келген бұрыштың функциясын қарастырып, келтіру формулаларын шығарып алды. Осылайша тригонометрия туралы жалпы ұғымдар, тригонометриялық функциялардың белгілеулері және анықтамалары ұзақ тарихи даму процесінде қалыптасып отыр.
Сфералық геометрия негіздері

Астрономияның көптеген мəселелерін шешу үшін аспандағы шырақтарға дейінгі қашықтықты анықтаудың қажеті жоқ. Астрометриялық өлшеулер үшін аспандағы шырақтардың көрінетін орнын оларға дейінгі бағытпен сипаттап, өзара орналасуын сол бағыттар арасындағы бұрыштармен анықтау жеткілікті. Мұндай өлшеулер жасауда аспанды белгілі бір сфера, ал аспандағы шырақтарды сол сфера бетінде орналасқан деп қарастырған ыңғайлы.



Аспан сферасы деп ортасы бақылаушы тұрған жерде, ал радиусы кез-келген болатын жəне бетіне аспан шырақтары бақылаушыға қалай көрініп тұрса, солай проекцияланған ойша алынған сфераны атаймыз. Аспан сферасы аспанның тəуліктік қозғалысын қайталайды деп аламыз. Аспан денелерінің көрінетін орны мен қозғалысын сипаттау үшін аспан сферасында негізгі нүктелер мен сызықтарды тағайындап алу қажет. Өлшеулер осы нүктелер мен сызықтарға

қатысты бұрыштық немесе доғалық бірліктермен (градус, минут, секунд) жүргізіледі.

Астрометрияның көптеген мəселелерін шешу сфералық геометрияның əдістерімен жұмыс істеуге келіп тірелетіні түсінікті: аспан сферасы стереометрияда қарастырылатын сфераның барлық қасиеттеріне ие. Осылардың бізге қажетті болатын кейбіреулерін атап өтейік.

Сфераның ортасынан (центрінен) өтетін жазықтықтың сферамен қиылысу сызығы радиусы сфераның радиусына тең үлкен шеңбер болып табылады (1.1 сурет). Бұл шеңбермен шектелген осы жазықтықтың бөлігі үлкен дөңгелек деп аталады. Ол сфераны екі жартысфераға бөледі. Екі үлкен шеңбер диаметралды қарама-қарсы екі нүктеде қиылысады.

φ


B′

φ




O

B

A

1.1 сурет



Сфера бетінде жатқан кез-келген екі нүкте арқылы үлкен шеңберді өткізуге болады (бұл тоқтам планиметрияның екі кез-келген нүкте арқылы түзуді жүргізуге болады деген аксиомасына баламалы). Аспан сферасының кез-келген екі нүктесі арасындағы қашықтықты сəйкесінші орталық радиусвекторлар арасындағы бұрышпен немесе осы екі нүкте арқылы өтетін үлкен шеңбер доғасымен өлшеуге болады. (Сфералық геометрияда бұл доға планиметриядағы түзудің орнына екі нүктені қосатын ұзындығы ең аз сызық болып табылады).

Аспан сферасын оның ортасынан өтпейтін жазықтықпен қиғанда кіші шеңбер шығады.



Сфералық үшбұрыш деп сфера бетіндегі үш үлкен шеңберлер доғаларынан құралған пішінді айтамыз (1.2 сурет). Сфералық үшбұрыштың бұрыштары ретінде оны құрайтын үлкен шеңберлердің жазықтықтары арасындағы бұрыштарды (мұндай бұрыштарды екіқырлы (екіжақты) деп атайды, 1.1 суреттегі ϕ бұрышы) алады. Біз қарастыратын жағдайларда бұл бұрыштардың əр қайсысы 180º аспайды, ал үшбұрыш бұрыштарының қосындысы сəйкесінше 540º аспайды, бірақ 180º кем болмайды. Сфералық артық бұрыш σ деп үшбұрыш бұрыштарының қосындысынан 180º алып тастағанда шығатын шаманы айтамыз:






σ = A+ B + C − 180º.

(2.1)




Сфералық үшбұрыштың ауданы

 

 

 

 




S = σ

 

πR 2

,

(2.2)




180°




 

 

 

мұндағы R – сфера радиусы.

1.2 сурет - Сфералық үшбұрыш



Сфералық үшбұрыштардың қабырғалары үлкен шеңберлердің доғалары болғандықтан, оларды сол үшбұрыштардың бұрыштары тəрізді градустармен өлшеу қабылданған. Яғни сфералық үшбұрыштың қабырғасы болып табылатын доға ұзындығы оның ұштарын сфера центрімен (ортасымен) қосатын екі радиусвектордың арасындағы бұрышпен өлшенеді. Сфералық үшбұрыштардың A бұрышына қарама-қарсы жатқан қабырғасын (доғасын) деп, B бұрышына қарама-қарсы жатқан қабырғасын (доғасын) деп, C бұрышына қарама-қарсы жатқан қабырғасын (доғасын) деп белгілейік. Сонда сфералық үшбұрыштар

үшін мына формулалар орындалады:

 

 

 

 

cos a = cos b cos c + sin b sin c cos A,

(2.3)

sin a cos B = sin c cos b – cos c sin b cos A,

(2.4)

 

sin a

=

sin b

=

sin c

= const ;

(2.5)

 

sin A

sin B

 

 

 

 

sin C

 

Мұндағы бірінші формула косинустар формуласы, екінші формула бес элементтер формуласы, ал үшінші формула синустар формуласы деп аталады. Осы үш қатынас сфералық үшбұрыштар мəселесін шешуде негізгі роль атқарады. Сфералық үшбұрыштың бір бұрышы тік болса, мысалы А=90º, жоғарғы қатынастардан мына формула шығаруға болады




tgB

=sin C .

(2.6)




tgb




 





Достарыңызбен бөлісу:
Loading...


©melimde.com 2020
әкімшілігінің қараңыз

    Басты бет
рсетілетін ызмет
Жалпы ережелер
ызмет стандарты
дістемелік кешені
бекіту туралы
туралы хабарландыру
біліктілік талаптары
кіміні аппараты
Конкурс туралы
жалпы біліктілік
ойылатын жалпы
мемлекеттік кімшілік
бойынша жиынты
жалпы конкурс
білім беретін
Барлы конкурс
республикасы білім
ызмет регламенті
ткізу туралы
конкурс атысушыларына
біліктілік талаптар
атысушыларына арнал
Республикасы кіметіні
идаларын бекіту
облысы кімдігіні
рсетілетін ызметтер
мемлекеттік ызмет
дістемелік сыныстар
Конкурс ткізу
стандарттарын бекіту
мемлекеттік мекемесі
Мектепке дейінгі
дебиеті маманды
дістемелік материалдар
білім беруді
жалпы білім
ауданы кіміні
конкурс туралы
мектепке дейінгі
рметті студент
облысы бойынша
мерзімді жоспар
мыссыз азаматтар
Мемлекеттік кірістер
Конкурс жариялайды
дарламасыны титулды
дістемелік кешен
ызметтер стандарттарын
разрядты спортшы
мелетке толма
директоры бдиев

Loading...