Евклид кеңістігінің қасиеттері Анықтама

Loading...


бет4/8
Дата30.03.2020
өлшемі408.09 Kb.
1   2   3   4   5   6   7   8
ортогонализациялау тәсілі деп аталады.

Теорема. Егер евклид кеңістігіндегі ортогоналды векторлар жүйесі болса, онда оған сызықты тәуелді ортонормалданған векторлар жүйесін мына төмендегі

(4.13) (4.13)

формулалармен өрнектеуге болады.



Дәлелдеуі. Теореманы дәлелдеу үшін (4.13) формулалармен өрнектелген ортонормалданған векторлар жүйесі екенін дәлелдесек жеткілікті. Шынында да, егер болса, онда:
ал егер i= j болса, онда

Теорема дәлелденді.



Теорема. Кез келген п өлшемді евклид R кеңістігінде п вектордан құрылған ортонормалданған базис бар.

Дәлелдеуі. векторлар жүйесі евклид R кеңістігінің базисі болсын делік. Сондықтан, 4.7-теорема бойынша векторларына сызықты тәуелді ортогонал векторлар жүйесін құрамыз: Енді 4.8-теореманы пайдаланып, векторларына сызықты тәуелді , ортонормалданған вектор жүйесін құрамыз, ал ол жүйе 4.6-теорема бойынша сызықты тәуелсіз, яғни евклид R кеңістігінің ортонормалды базисі. Теорема дәлелденді.

Мысал. [-1,1] сегментте анықталған дәрежесі үштен аспайтын көпмүшеліктер кеңістігіндегі ортогонал базисті табалық.

Ортогонал базисті табу үшін элементтерін базис ретінде қарастыралық. Енді 1, элементтеріне сызықты тәуелді ортогонал базис ізделік. (4.9) формула бойынша:

Мұндағы .

Сонымен,

(.9) формуладан



мұндағы

Сонымен,



Ең соңында (4.9) формуладан:



мұндағы

Сонымен,





Достарыңызбен бөлісу:
1   2   3   4   5   6   7   8
Loading...


©melimde.com 2020
әкімшілігінің қараңыз

    Басты бет
рсетілетін ызмет
Жалпы ережелер
ызмет стандарты
дістемелік кешені
бекіту туралы
туралы хабарландыру
біліктілік талаптары
кіміні аппараты
Конкурс туралы
жалпы біліктілік
ойылатын жалпы
мемлекеттік кімшілік
жалпы конкурс
білім беретін
Барлы конкурс
республикасы білім
ызмет регламенті
бойынша жиынты
ткізу туралы
конкурс атысушыларына
біліктілік талаптар
атысушыларына арнал
Республикасы кіметіні
идаларын бекіту
облысы кімдігіні
мемлекеттік ызмет
рсетілетін ызметтер
стандарттарын бекіту
Конкурс ткізу
дебиеті маманды
мемлекеттік мекемесі
Мектепке дейінгі
дістемелік сыныстар
дістемелік материалдар
ауданы кіміні
конкурс туралы
жалпы білім
рметті студент
облысы бойынша
мектепке дейінгі
мыссыз азаматтар
Мемлекеттік кірістер
білім беруді
дарламасыны титулды
Конкурс жариялайды
дістемелік кешен
мелетке толма
ызметтер стандарттарын
разрядты спортшы
аласы кіміні
директоры бдиев

Loading...