8 сынып i-тур



бет1/3
Дата23.11.2022
өлшемі53.69 Kb.
#361331
  1   2   3
Байланысты:
Олимпиада есептери жауаптарымен (1)-2-1


Оқушылардың математика пәні бойынша Республикалық олимпиадасының аудандық этапы 2013-2014 жыл желтоқсан айы 18-19 жұлдызы
8 сынып I-тур

  1. a+b=1a+1b=6 қатынасын қанағаттандыратын a, b нақты сандар үшін ab+ba өрнегінің мәнін табыңыз.

Шешуі: 36 = 6 * 6 = (a + b) ( 1a+1b ) = 1 + ab+ba+1 болғандықтан ab+ba=34 болады.





  1. 72013 дәрежесінің соңғы екі цифры неге тең.

Шешуі: 70=1, 71=7, 72=49, 73=343, 74=2401 болғандықтан, 2013=4*503+1 түрінде жазып


72013=74*503+1=( 74)503*7=(2400+1)503*7=
=(2400503+…+503*2400+1)=...*100*7+7=...07 түрінде жазылады. Ендеше ең соңғы екі сан 0 мен 7 болады.
Жауабы: Соңғы екі сан ....07



  1. Аралда 7 көк , 9 жасыл және 11 қызыл құбылғылар тұрады. Әртүрлі түстегі екі құбылғы кездескенде екеуі де үшінші түске өзгереді. Қандайда бір уақыттан кейін барлық құбылғылар бір түске боялуы мүмкін бе?

Шешуі: Құбылғылардың көк, жасыл және жасыл түстерін сәйкесінше
к , ж , қ әріптерімен белгілейік. Ендеше есептің шарты бойынша
1) Егер к+ж=қ болса, онда 7(к+ж)=7қ, яғни 7к+7ж=7қ.
Барлығы 7қ+11қ=18қ (қызыл) құбылғы. Артық кездеспей қалған жасыл құбылғылар 9ж-7ж=2ж болады.
2) Егер ж+қ=к болса, онда 9ж+9қ=9к. Барлығы 9к+7к=16к құбылғы 11қ-9қ=2қ. Бұл жолы кездесуден тыс қалған 2 қызыл құбылғы болады.
3) Егер к+қ=ж болса, онда 7к+7қ=7ж. Барлығы
7ж+11ж=18ж құбылғы. 11қ-7қ=4қ. Бұл жағдайда кездеспеген 4 қызыл құбылғы қалады. Бір мезетте барлық құбылғылардың түсі бірдей болу үшін артық, яғни кездесуден тыс қалатын құбылғылар болмау керек. Олай болса, бір мезетте барлық құбылғылардың түсі бір түске айналмайды.
жауабы: Бір мезетте барлық құбылғылардың түстері бірдей бола алмайды.

8 сынып II-тур



  1. 5-ке және 9-ға бөлінетін, 1-ді және өзін қоса есептегенде дәл 10 бөлгішке ие болатын барлық натурал сандарды табу керек.

Шешуі: Ізделінді сан 5-ке де, 9-ға да бөлінсе және 5 пен 9 өзара жай болғандықтан, ол сан 45-ке бөлінуі тиіс. Ал 45=3*3*5 болғандықтан,ізделінді санда 1,3,5,9,15,45 –кем дегенде 6 бөлгіш бар. Егер ізделінді сан тағы да бір P ≠ 3.5 жай санына бөлінсе, онда ізделінді сан кем дегенде 12 бөлгіш болып кетеді. Ал бізге дәл 10 бөлгіш болуы керек. Сондықтан бізде екі мүмкіндік қалады. Олар келесілер: N=3*3*3*3*5 және N=3*5*5*5*5. Екінші сан 9-ға бөлінбейді.


Жауабы: N=3∙3∙3∙3∙5=405



  1. x2-8x+41+y2+6y+25=9 теңдеуін нақты сандар жиынында шешіңіздер.

Шешуі: Түбір астындағы өрнектерден толық квадратты бөліп аламыз.


x2-8x+41+y2+6y+25=x2-8x+16+25+y2+6y+9+16=
=(x-4)2+25+(y+3)+16=9
Теңдік тек қана x-4=0, y+3=0 болғанда ғана орындалады. Ендеше x=4, y=-3.



  1. АВС үшбұрышының АD биіктігі ВС қабырғасынан екі есе кіші.

А бұрышы доғал болуы мүмкін бе?

Шешуі: АD биіктігінің А төбесі мен D табаны сәйкесінше А нүктесінен өтетін СВ-ға параллель түзу мен С және В нүктелерінен өтетін түзуге тиісті болады. D нүктесі ВС-нің ортасы болған жағдайды координаталар басы деп есептеп А нүктесін −∞ тен +∞ дейін өзгертеміз. Сонда А бұрышы 0-ден 90 ̊-дейін және 90 ̊-тан 0-ге дейін өзгереді. Ендеше А бұрышы доғал болуы мүмкін емес.


Жауабы: А бұрышы доғал болуы мүмкін емес

9 сынып I-тур





  1. АВСD квадраты берілген.АС және ВС кесінділерінде кесінділердің шетімен беттеспейтіндей етіп, сәйкесінше М және N нүктелері алынған. Егер MN=MD болғанда ∠ MDN бұрышының шамасы неге тең?

Шешуі: Дәл осы түрдегі сызбаның болуы мүмкін емес, себебі MN=MD. Сондықтан сызбаны келесі түрде басқаша сызамыз. ∠CDN=β, ∠NDM=α болсын. Онда ∠NDA=β болады да ∠MDA=β-α болады. Олай болса ∠MBA= β-α болады. Ендеше ∠NBM=∠MNB=90-β+α. Берілгені бойынша ∠DNM=∠NDM=α. Ендеше 900+α-β= ∠MNB=180-α-β болғандықтан α=45° болады.




Достарыңызбен бөлісу:
  1   2   3




©melimde.com 2022
әкімшілігінің қараңыз

    Басты бет
Сабақтың тақырыбы
бойынша жиынтық
жиынтық бағалау
Сабақ тақырыбы
Сабақтың мақсаты
ғылым министрлігі
бағдарламасына сәйкес
тоқсан бойынша
Реферат тақырыбы
бағалауға арналған
Сабақ жоспары
сәйкес оқыту
жиынтық бағалауға
арналған тапсырмалар
оқыту мақсаттары
білім беретін
Қазақстан республикасы
бағалау тапсырмалары
Қазақстан тарихы
жиынтық бағалаудың
республикасы білім
мерзімді жоспар
Жалпы ережелер
бекіту туралы
тоқсанға арналған
Қазақстан республикасының
рсетілетін қызмет
нтізбелік тақырыптық
жалпы білім
болып табылады
арналған жиынтық
Зертханалық жұмыс
оқыту әдістемесі
арналған әдістемелік
Мектепке дейінгі
Қазақ әдебиеті
қызмет стандарты
бағалаудың тапсырмалары
Инклюзивті білім
білім берудің
тақырыптық жоспар
пәнінен тоқсанға
туралы жалпы
Қысқа мерзімді
атындағы жалпы
пайда болуы
Жұмыс бағдарламасы
әдістемелік ұсыныстар
республикасының білім
қарым қатынас
Әдістемелік кешені