Асимптоты графика функций: их виды, примеры решений Понятие асимптоты

Loading...


бет1/8
Дата01.12.2019
өлшемі340.5 Kb.
  1   2   3   4   5   6   7   8
Асимптоты графика функций: их виды, примеры решений

  • Понятие асимптоты

  • Вертикальные асимптоты

  • Горизонтальные асимптоты

  • Наклонные асимптоты

Понятие асимптоты

Если предварительно построить асимптоты кривой, то многих случаях построение графика функции облегчается.

Судьба асимптоты полна трагизма. Представьте себе, каково это: всю жизнь двигаться по прямой к заветной цели, подойти к ней максимально близко, но так и не достигнуть её. Например, стремиться соединить свой жизненный путь с путём желанного человека, в какой-то момент приблизиться к нему почти вплотную, но даже не коснуться его. Или стремиться заработать миллиард, но до достижения этой цели и записи в книгу рекордов Гиннеса для своего случая не достаёт сотых долей цента. И тому подобное. Так и с асимптотой: она постоянно стремится достигнуть кривой графика функции, приближается к нему на минимальное возможное расстояние, но так и не касается его.

Определение 1. Асимптотами называются такие прямые, к которым сколь угодно близко приближается график функции, когда переменная стремится к плюс бесконечности или к минус бесконечности.

Определение 2. Прямая называется асимптотой графика функции, если расстояние от переменной точки М графика функции до этой прямой стремится к нулю при неограниченном удалении точки М от начала координат по какой-либо ветви графика функции.

Различают три вида асимптот: вертикальные, горизонтальные и наклонные.

Вертикальные асимптоты

Первое, что нужно узнать о вертикальных асимптотах: они параллельны оси Oy.



Определение. Прямая x = a является вертикальной асимптотой графика функции, если точка x = a является точкой разрыва второго рода для этой функции.

Из определения следует, что прямая x = a является вертикальной асимптотой графика функции f(x), если выполняется хотя бы одно из условий:



  • (предел функции при значении аргумента, стремящимся к некоторому значению a слева, равен плюс или минус бесконечности)

  • (предел функции при значении аргумента, стремящимся к некоторому значению a справа, равен плюс или минус бесконечности).

При этом функция f(x) может быть вообще не определена соответственно при xa и xa.

Замечание:



  • символом обозначается стремление x к a справа, причём x остаётся больше a;

  • символом обозначается стремление x к a слева, причём x остаётся меньше a.

Из сказанного следует, что вертикальные асимптоты графика функции можно искать не только в точках разрыва, но и на границах области определения. График функции, непрерывной на всей числовой прямой, вертикальных асимптот не имеет.



Пример 1. График функции y=lnx имеет вертикальную асимптоту x = 0 (т.е. совпадающую с осью Oy) на границе области определения, так как предел функции при стремлении икса к нулю справа равен минус бесконечности:

(рис. сверху).




Достарыңызбен бөлісу:
  1   2   3   4   5   6   7   8
Loading...


©melimde.com 2020
әкімшілігінің қараңыз

    Басты бет
рсетілетін ызмет
Жалпы ережелер
ызмет стандарты
дістемелік кешені
бекіту туралы
туралы хабарландыру
біліктілік талаптары
кіміні аппараты
Конкурс туралы
жалпы біліктілік
ойылатын жалпы
мемлекеттік кімшілік
жалпы конкурс
Барлы конкурс
білім беретін
ызмет регламенті
ткізу туралы
республикасы білім
конкурс атысушыларына
біліктілік талаптар
атысушыларына арнал
Республикасы кіметіні
идаларын бекіту
облысы кімдігіні
рсетілетін ызметтер
мемлекеттік ызмет
Конкурс ткізу
стандарттарын бекіту
бойынша жиынты
дебиеті маманды
мемлекеттік мекемесі
дістемелік сыныстар
дістемелік материалдар
ауданы кіміні
конкурс туралы
рметті студент
Мектепке дейінгі
облысы бойынша
мыссыз азаматтар
жалпы білім
Мемлекеттік кірістер
мектепке дейінгі
Конкурс жариялайды
дарламасыны титулды
білім беруді
разрядты спортшы
дістемелік кешен
ызметтер стандарттарын
мелетке толма
аласы кіміні
директоры бдиев

Loading...